Perturbation from an elliptic Hamiltonian of degree four—IV figure eight-loop

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian cosmological perturbation theory with loop quantum gravity corrections

Cosmological perturbation equations are derived systematically in a canonical scheme based on Ashtekar variables. A comparison with the covariant derivation and various subtleties in the calculation and choice of gauges are pointed out. Nevertheless, the treatment is more systematic when correction terms of canonical quantum gravity are to be included. This is done throughout the paper for one ...

متن کامل

A circular tris[2]catenane from molecular 'figure-of-eight'.

A 'figure-of-eight'-shaped molecule with Pd(ii) at the node was self-assembled into an unprecedented circular tris[2]catenane via reversible double catenation at both loops of the 'figure-of-eight' molecule.

متن کامل

Symmetric orbits arising from Figure-Eight for N-body problem

In this paper, we first describe how we can arrange any bodies on Figure-Eight without collision in a dense subset of [0, T ] after showing that the self-intersections of Figure-Eight will not happen in this subset. Then it is reasonable for us to consider the existence of generalized solutions and non-collision solutions with Mixed-symmetries or with Double-Eight constraints, arising from Figu...

متن کامل

Hamiltonian Perturbation Theory

The variational formulation for Lie-transform Hamiltonian perturbation theory is presented in terms of an action functional defined on a two-dimensional parameter space. A fundamental equation in Hamiltonian perturbation theory is shown to result from the freedom of choice of the integration path for the action functional.

متن کامل

Eight Limit cycles around a Center in quadratic Hamiltonian System with Third-Order perturbation

In this paper, we show that generic planar quadratic Hamiltonian systems with third degree polynomial perturbation can have eight small-amplitude limit cycles around a center. We use higher-order focus value computation to prove this result, which is equivalent to the computation of higher-order Melnikov functions. Previous results have shown, based on first-order and higher-order Melnikov func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2003

ISSN: 0022-0396

DOI: 10.1016/s0022-0396(02)00111-0